$\frac{C(CF_3)_2OH \rightarrow OCH(CF_3)_2}{COMPOUNDS}$ ISOMERISM IN SOME SULFUR AND PHOSPHORUS

GERD-VOLKER ROSCHENTHALER* AND D. DAKTERNIEKS

Lehrstuhl B für Anorganische Chemie der Technischen Universität Braunschweig, Pockelsstr. 4, D-33 Braunschweig

The insertion of $(CF_3)_2CO$ into the P-H bond of $Me_n H_3 P$ yields $Me_{n}H_{2-n}PC(CF_{3})_{2}OH$ and $Me_{n}H_{1-n}P[C(CF_{3})_{2}OH]_{2}$ (n=0,1), respectively [1]. $MeP[C(CF_3)_2OH]_2$ rearranges giving the diphosphine $[MePOCH(CF_3)_2]_2$ and the phosphorane $MeP[OCH(CF_3)_2]_4$. Me_2PH reacts with $(CF_3)_2CO$ forming several products, e.g. $MePF[OCH(CF_3)_2]_2$ and Me_2PPMe_2 [1]. The phosphines tBu(R)PH(R=Me, tBu), however, add $(CF_3)_2CO$ giving rise to the phosphinites $tBu(R)POCH(CF_3)_2$, which furnish stable phosphonium salts upon treating with MeI. $(CF_3)_2CO$ inserts into the S-H bond of RSH to yield RSC(CF $_3$) $_2$ OH (R≈H,Me,Ph), which were reacted with MeI, too. Reacting SCl_2 with LiOCH(CF₃)₂ gives ${\rm S[OCH(CF_3)_2]_2}$ which is oxidised by chlorine to the sulfurane $Cls[OCH(CF_3)_2]_3$ [2]. The sulfurane is able to transfer $(CF_3)_2$ CHO groups to phosphorus(III) compounds, e.g. $P[OCH(CF_3)_2]_3$ and Me_3P yielding $P[OCH(CF_3)_2]_5$ and [Me₃POCH(CF₃)₂]⁺Cl⁻. ClS[OCH(CF₃)₂]₃ gives a stable salt upon reaction with $SbCl_5$, like $ClP[OCH(CF_3)_2]_4$. The mechanisms for these reactions are discussed.

G.-V. Röschenthaler, Z. Naturforsch. <u>33b</u>, 311 (1978).
G.-V. Röschenthaler, Angew. Chem. <u>89</u>, 900 (1977).

* Present address: Fachbereich 3, Universität Bremen, D-28 Bremen 33